15

20

Attorney Docket No. 10005.000120

METHOD AND APPARATUS FOR DISTRIBUTING A COMPUTER
PROGRAM

inventors: Jax B. Cowden, Kevin V. Dahlstrom, Scott G. Eagle, Charles Gilbert, Philip D.

Hollrah, Anthony G. Martin, Jeff McFadden, Mark E. Pennell, and Marc E. Silverberg

BACKGROUND OF THE INVENTION

1. Field Of The Invention

This invention relates generally to computer systems, and more particularly to

detection and processing of windows.
2. Description Of The Background Art

A computer network couples various remotely located computers together to
allow them to exchange information. On the Internet, for example, a user with a
personal computer and a web browser can access a remotely located web server
computer. The web server computer serves (i.e., delivers) content to a window in the
personal computer. The web server computer may include web pages containing
information that is of interest to the user. The web server computer may also include

downloadable computer programs.

A typical commercially-operated web server on the Internet includes some form
of advertising. The advertising may be for goods or services. The advertising may also
be non-product related (e.g., “vote for John Doe”). Regardless of their message, these
advertisements provide revenue to the web server operator. Thus, not satisfied with

just having advertisements on a web page, operators have come up with various ways
-1-

|



15

20

Attorney Docket No. 10005.000120

of displaying advertisements on a user's computer screen. Needless to say,

advertisements abound on the Internet.

One way of displaying advertisements is via a separate window. This separate
window is commonly referred to as a “pop-up” if displayed on top of other windows, or a
‘pop-under” if displayed under other windows. Pop-ups and pop-unders appear on a
user’s screen when the user navigates to (i.e., visits) a web server containing them;
along with the usual web page content, the web server also downloads to the user’s
computer HTML (Hypertext Markup Language) code for generating a pop-up and/or
pop-under. Users often find pop-ups annoying because they tend to appear
unexpectedly and in the middle of the screen. Some users have accepted pop-ups as
an unavoidable nuisance on the Internet, and just instinctively remove them as soon as
they appear. Pop-unders, which don’t become visible to the user until windows on top

of them have been removed, are no less annoying.

Computer programs have been developed to prevent pop-ups and pop-unders
from appearing on a computer screen. Such computer programs are available from
commercial software developers (e.g., InterMute), sources of freeware, and various web
sites on the Internet including download.com, adext.magenet.net, adsubtract.com,
iconlabs.net, 32bit.com, etc. However, these computer programs either get rid of too

many or too little pop-ups and pop-unders.

Web server operators and their partners have also come up with various ways of
offering downloadable computer programs to users. One way of offering a computer
program to a user is to present the user a dialog box explaining the function of the

program, and a button or a hyperlink for downloading the program to the user's

-2



15

20

Attorney Docket No. 10005.000120

computer. Aside from the dialog box, the user typically has no other immediate source
of information regarding the program, and is thus at the mercy of the web server

operator or its partner.
SUMMARY

The present invention relates to an improved technique for processing windows.
In one embodiment, a computer program includes components for detecting the
occurrence of a new window, determining the type of the window, and performing

actions depending on the type of the window.

In one embodiment, a computer program blocks windows categorized as bad
windows, while allowing windows categorized as good windows to be displayed. In one
embodiment, the computer program categorizes windows by consulting one or more
lists. A list may include a set of rules for determining whether a window is a bad window
or a good window. A list may also include a set of domain names where window-
blocking is not performed. In one embodiment, a list may be updated from time to time
to optimize the computer program and prevent program-obsolescence. Techniques for

defeating a window-blocking mechanism are also disclosed.

In one embodiment, a computer program detects if a window is of a type
employed to offer a product to a user. If so, the computer program provides a separate
window containing information regarding the product; thus, providing the user additional

information that she can use in deciding whether or not to get the product.

In one embodiment, a computer program detects if a user has a need for the

computer program. If so, the user is informed of the efficacy of the computer program,

-3-



15

Attorney Docket No. 10005.000120

which is then offered to the user. Offering the computer program to the user at a time
when the user has a need for it increases the likelihood that the user will accept the

program.

These and other features and advantages of the present invention will be readily
apparent to persons of ordinary skill in the art upon reading the entirety of this

disclosure, which includes the accompanying drawings and claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of a computer network in accordance with an

embodiment of the present invention.

FIG. 2 shows a schematic diagram of a computer in accordance with an

embodiment of the present invention.

FIG. 3 shows a schematic diagram of a computer memory configured in

accordance with an embodiment of the present invention.
FIG. 4 shows a schematic representation of a web browser.
FIG. 5 shows a schematic representation of an example bad window.

FIGS. 6A, 6B, and 6C show various user interfaces for adding a domain name in

an exclusion list.

FIG. 7 shows a flow diagram of a method for processing windows in accordance

with an embodiment of the present invention.




15

20

Attorney Docket No. 10005.000120

FIG. 8 shows a schematic representation of a blinking tray icon for alerting a user
that a bad window has been blocked in accordance with an embodiment of the present

invention.

FIGS. 9A and 9B schematically illustrate the presentation of a window containing
third-party product information in accordance with an embodiment of the present

invention,

FIG. 10. shows a flow diagram of a method for distributing a computer program in

accordance with an embodiment of the present invention.

The use of the same reference label in different drawings indicates the same or

like components.

DETAILED DESCRIPTION

In the present disclosure, numerous specific details are provided, such as
examples of computer systems, components, computer programs, and/or methods, to
provide a thorough understanding of embodiments of the invention. One skilled in the
art will recognize, however, that the invention can be practiced without one or more of
the specific details, or with other computer systems, components, computer programs,
methods, and/or the like. In other instances, well-known details are not described to

avoid obscuring aspects of the invention.

In the present disclosure, the term “window” is used to refer to any mechanism
for presenting information to a user. Thus, the term “window” also includes message
boxes, dialog boxes, text boxes, banners, etc. A window may be associated with a web

browser, or may be generated as a resuit of receiving information from another

-5.-




15

20

Attorney Docket No. 10005.000120

computer over a computer network or from a local computer program. Also, “computer
program” or “program” refers to a set of computer-readable program code; “computer-
readable program code” refers to lines of computer instructions written in a
programming language. As can be appreciated, a computer program may also be

equivalently implemented in hardware or firmware.

In the present disclosure, the term “list” is used to refer to a group of information.
A list may be a separate module of a computer program (e.g., a text data file) or
embedded in a computer program. When implemented as a separate module, a list
may be updated by installing a new list. A list embedded in a computer program may
be updated by installing a new computer program. A list may be in any computer-

readable format or data structure.

Computing Environment

Referring now to FIG. 1, there is shown a schematic diagram of a computer
network in accordance with an embodiment of the present invention. A network 100
includes one or more client computers 101, one or more web server computers 102,
one or more support server computers 103, and other computers not shown.
Intermediate nodes such as gateways, routers, bridges, Internet service provider
networks, public-switched telephone networks, proxy servers, firewalls, etc. are not
shown for clarity. In the embodiment of FIG. 1, network 100 includes the Internet;
however, any type of computer network may also be used. Computers may be coupled
to network 100 using any type of connection without detracting from the merits of the

present invention.




15

20

Attorney Docket No. 10005.000120

A client computer 101 is typically, but not necessarily, a personal computer such
as those running the Microsoft Windows™, Apple Macintosh™, Linux etc. operating
systems. A user employs a suitably equipped client computer 101 to get on network
100 and access computers coupled thereon. For example, a client computer 101 may
be used to access web pages from a web server computer 102. It is to be noted that
the term “computer” includes any type of information processing device such as

personal digital assistants, digital telephones, wireless terminals, etc.

A web server computer 102 may be a web site containing information designed
to attract users browsing on the Internet. A web server computer 102 may also include
advertisements, downloadable computer programs, and products (i.e., goods and

services) available for online purchase.

A support server computer 103 may also be a web site. Additionally, a support
server computer 103 includes files and downloadable computer programs for

supporting, updating, or maintaining computer programs on a client computer 101.

Web server computers 102 and support server computers 103 are typically, but
not necessarily, server computers such as those available from Sun Microsystems,
Hewilett-Packard, International Business Machines, etc. A client computer 101
communicates with a web server computer 102 or a support server computer 103 using
client-server protocol. Client-server computing is well known in the art and will not be

further described here.

Referring now to FIG. 2, there is shown a schematic diagram of a computer 200
in accordance with an embodiment of the present invention. As can be appreciated, a

computer 200 may be utilized as a client computer or a server computer depending on
-7-



20

Attorney Docket No. 10005.000120

configuration. A computer 200 includes a processor 202, a memory 203, a mass
storage device 204, a removable storage medium 205, a removable storage medium
reader 206, input devices 207, computer screen 208, multi-media devices 209, a
communications interface 210, and other devices not specifically shown. The just
mentioned components are coupled to a bus 201, which may be a single contiguous
bus or a network of buses. As can be appreciated, the components of a computer 200
may be integrated into one or more devices (e.g., as components of a chipset), or

implemented as separate devices.

A processor 202 may be any type of computer processor such as the Intel
Pentium™, Power PC™, AMD Athlon™, Sun SPARC™, and like processors. A
processor 202 executes computer-readable program code stored in a memory 203,
which may be any type of computer memory. A memory 203 may comprise one or
more physical memories such as SRAM, DRAM, ROM, EEPROM, Flash, and the like.
A memory 203 may also comprise one or more virtual memory locations such as a

mass storage device location mapped as physical memory, for example.

A mass storage 204 may be any type of storage device capable of storing
computer data (e.g., program code, files) such as magnetic disk drives, optical drives,
and the like. Computer-readable program code and associated data may be loaded |
from a mass storage 204 and into a memory 203. Computer-readable program code
and associated data may also be loaded from a removable storage medium 205 using a
removable storage medium reader 206. Examples of removable storage media 205
include floppy disks, CD-ROMSs, smart cards, flash memories, PCMCIA cards, DVDs,

etc.



15

20

Attorney Docket No. 10005.000120

Input devices 207 allow a user to enter data into a computer 200. Examples of
an input device 207 include a keyboard, mouse, trackball, touch pad, joystick, etc. A
computer screen 208 may be any type of device capable of displaying information such
as a cathode-ray tube (CRT), flat-panel, LCD, TFT, and the like. A multi-media device
209 allows the user to work with rich media. Examples of multi-media devices include

sound cards, microphones, scanners, video processors, speakers, etc.

A computer 200 is coupled to a computer network such as network 100 via a
communications interface 210. A communications interface 210 may be any type of
communications device for coupling a computer to a computer network. A
communications interface 210 may be a modem, network adapter, Ethernet card, a

wireless transceiver, etc.

A Window-Blocking Computer Program

Referring now to FIG. 3, there is shown a schematic diagram of a memory 203A
of a client computer 101 configured in accordance with an embodiment of the present
invention. A memory 203A is a specific embodiment of a memory 203 depicted in FIG.
2. In the embodiment of FIG. 3, a memory 203A is configured to include the following
components: web browser 302, web browser applications programming interface (API)
304, listener 306, window analyzer 308, rules list 310, exclusion list 312, support server
interface 314, window cache 316, score keeper 318, user interface (Ul) manager 320,
and product list 322. As can be appreciated, the components of a memory 203A may
be embodied in a single program module or in multiple program modules. Also, the

components of a memory 203A may be incorporated as part of a window-blocking



15

20

Attorney Docket No. 10005.000120

computer program; the window-blocking computer program may be downloaded from a

server computer or distributed on removable storage media.

A web browser 302 includes computer-readable program code for getting a web
page from a web server, and displaying its content on a computer screen. Web browser
302 may be any type of web browser or web client. Examples of a web browser 302

include the Netscape Navigator™ and Microsoft Internet Explorer™ web browsers.

FIG. 4 schematically illustrates an example browser window 401 of a web
browser 302. The browser window that a user normally employs for navigation, such as
browser window 401, is also referred to herein as a “main browser window”. Browser
window 401 includes a title bar 402 for displaying the title of a web page 407. A menu
bar 403 includes pull down menus for various functions, while a tool bar 404 provides
shortcuts to various functions. An address window 405 displays the uniform resource
locator (URL) of a web page 407. A status bar 406 displays various status information.
For example, status bar 406 displays the current activity of web browser 302 such as
when it is trying to find a web server identified by a URL, whether it is connected to the
web server, whether it is getting web pages from the web server, etc. As another
example, the URL pointed to by a hyperlink may be displayed on status bar 406 by

placing a cursor 408 on the hyperlink.

Referring back to FIG. 3, a web browser APl 304 includes computer-readable
program code for communicating with web browser 302. Web browser API 304 allows
various components of memory 203A to send commands, which are also known as
browser methods, to web browser 302. Examples of commands that may be sent to

web browser 302 include commands to open a new window, close a window, notify a

-10 -




15

20

Attorney Docket No. 10005.000120

listener 306 of the occurrence of certain events, provide the attributes of a window,
provide the information displayed on a status bar, and redirect data from one window to

another.

A listener 306 includes computer-readable program code for receiving browser
event notifications from web browser 302. In one embodiment, listener 306 receives a
browser event notification when the status bar of web browser 302 changes or when a
new window is opening up. Listener 306 further receives browser event notifications of
where the new window is navigating to (e.g., going to www.buynow.com) and where the

new window ended up (e.g., ended up in www.discountstore.com).

A window analyzer 308 includes computer-readable program code for
determining whether a window is a “good window” or a “bad window.” Examples of
good windows include those initiated by a user, whereas examples of bad windows
include pop-ups and pop-unders. Window analyzer 308 blocks bad windows, while
allowing good windows to be displayed. In one embodiment, window analyzer 308
consults a rules list 310 to determine if a window is a good window or a bad window.
Rules list 310 may be included in a text file stored in a mass storage device and then
loaded into memory 203A, for example. Rules list 310 may be in any computer-
readable format or data structure. Advantageously, rules list 310 is implemented as a
separate module so that it may be updated without having to update the entirety of a

computer program employing rules list 310.

The rules in rules list 310 may be based on a window’s characteristics: the
window’s attributes, whether it was initiated by a program or by the user, where it is

navigating to and where it ended up, it's fields (e.g., login field, password field) , how

-11 -



15

20

Attorney Docket No. 10005.000120

many times it tried to be displayed, where on the screen it is to be displayed, etc.
Window analyzer 308 obtains a window's characteristics from web browser 302 by

invoking browser methods made possible by web browser API 304.

fn one embodiment, rules list 310 includes a set of rules for identifying good and
bad windows. The rules may be updated from time to time by downloading a new set of
rules from a support server computer 103, for example. This allows window analyzer
308 to be updated in order to detect new kinds of bad windows. This further allows
window analyzer 308 to be optimized; the rules may be fine tuned to block the right

amount and type of window for a given application.

In one embodiment, rules list 310 includes rules for identifying bad windows
based on their attributes. The attributes of a window may be obtained by window
analyzer 308 from web browser 302. Examples of window attributes that may be used
to identify a bad window include menu bars and tool bars. In one embodiment, a new
window that does not have a menu bar or a tool bar is deemed to be a bad window.
Such a window is schematically depicted in FIG. 5 as a window 501. As is typical of
bad windows such as pop-ups and pop-unders, window 501 has a remove button 502
but does not have a menu bar or a tool bar. As can be appreciated, rules list 310 may
be updated to remove or modify the rule on menu/tool bar in applications where good

windows also do not have a menu/tool bar.

In one embodiment, rules list 310 includes a rule that new windows navigating to
a blank page, commonly referred to as “About:Blank,” are deemed to be bad windows.
Some bad windows are opened to a blank page (rather than to an HTML page on a

remotely located web server) in order to speed up the opening of the window. This

-12 -




15

20

Attorney Docket No. 10005.000120

allows the bad window to be created fast enough such that it can be hidden under other
windows without the user noticing it. Content, which is typically but not necessarily

some form of advertising, is then included in the blank page using a script.

In one embodiment, rules list 310 includes a rule that new windows designated to

be displayed under other windows (e.g., pop-unders) are deemed to be bad windows.

In one embodiment, rules list 310 includes a rule that new windows launched
when a user navigates out of a web site or web page are deemed to be bad windows.
Using Microsoft Internet Explorer™ web browser as an example, listener 306 receives a
NewWindow?2 event notification when a new window is about o be launched. Listener
306 also receives a DocumentComplete event notification when a web page has been
completely loaded and initialized, and a BeforeNavigate2 event notification before
navigation occurs. When listener 306 receives a NewWindow2 after receiving a
DocumentComplete but before receiving a BeforeNavigate2, window analyzer 308

presumes that the new window being launched is due to the user leaving the web site.

In one embodiment, rules list 310 includes a rule that new windows launched
shortly (e.g. within 2 seconds) after a main browser window changes are deemed to be
bad windows. The amount of time for waiting for the launching of a new window may be
varied depending on implementation. A change in the main browser window may be
detected by comparing its URL or HTML content. The idea behind this rule is that a
new window appearing shortly after a main browser window has changed is likely due to
the user navigating to another web page or web site. Thus, there is a good chance that

the new window is a bad window (e.g., pop-up or pop-under).

-13-



20

Attorney Docket No. 10005.000120

In one embodiment, rules list 310 includes a rule that new windows launched by
a window that has been closed are deemed to be bad windows. The launching of a
new window by another window, also referred to as spawning, is reported by a browser
302 as part of its general event notification. The newly launched window is identified
and then prevented from being displayed. For example, if a WindowA closes and

launches WindowB before disconnecting, the following sequence of events occur:

WindowA CLOSE
WindowA NewWindow (for WindowB)
WindowA DISCONNECT

In the above example, WindowB is deemed to be a bad window and accordingly

blocked by window analyzer 308.

In one embodiment, rules list 310 also includes rules for determining whether a
window is a good window. Good window rules take priority over bad window rules; that
is, a window that is deemed to be a good window is allowed to be displayed even if that
window is deemed to be bad. For example, a window that has no menu bar or tool bar
will be displayed if that window is deemed to be a good window. The use of good
window rules, although not necessary to the present invention, allows a window-
blocking computer program to be optimized. That is, instead of indiscriminately blocking
all kinds of bad windows, good window rules allow for exceptions that help fine tune the
window blocking process. Therefore, classifying a window as a good window (using
good window rules) or as a bad window (using bad window rules) allows for the blocking

of the right amount and type of window for a given application.

-14 -



15

20

Attorney Docket No. 10005.000120

In one embodiment, rules list 310 includes a rule that a new window initiated by
the user is deemed to be a good window. This rule is referred to as the “user-initiated”
rule. Examples of user-initiated windows include those launched when the user clicks
on a hyperlink, selects to open a new window from a menu, interacts with a hyperlink,
etc. The user-initiated rule allows bad windows to be blocked while minimizing

interference with a user’'s normal browsing activities.

A user may initiate a new window by clicking on an element of an HTML
document such as, for example, a hyperlink. The hyperlink may be in the form of a
button or highlighted text. When the user clicks on a hyperlink, a new window is

launched and allowed to be displayed.

In the Internet Explorer™ web browser, for example, web browser APl 304 may
register with an HTML document displayed on a window as soon as a
NavigateComplete event notification is received from the web browser. This allows
hooking into the HTML document. Thereafter, when the user clicks on the HTML
document, listener 306 would get notification of the clicking event and, in version 5 or
higher of the Internet Explorer™ web browser, the element that the user clicked on.
The URL associated with the clicked element is stored in a window cache 316, and then
compared to the URL of any new window. When the URL of a new window matches
that of an element previously clicked on by the user, the new window is deemed to be a
user-initiated window and accordingly not blocked. In situations where the URL of an
element is not detectable (e.g., when the element calls a script), any new window
launched within a short period of time (e.g., two seconds) after the user clicked on the

element is deemed to be a user-initiated window and accordingly not blocked.

-15 -



15

20

Attorney Docket No. 10005.000120

A user may initiate a new window from a menu choice. In the internet Explorer™
web browser, for example, pointing the cursor on a hyperlink and pressing the right
mouse button displays a menu which includes a selection choice that reads: “Open In
New Window”. Selecting “Open In New Window” launches a new window that is

allowed to be displayed.

The user may also initiate a new window by interacting with a hyperlink. In the
Internet Explorer™ web browser, for example, placing a cursor on a hyperlink displays
on a status bar (e.g., see status bar 406 of FIG. 4) the URL pointed to by the hyperlink.
URLs appearing on the status bar may be temporarily stored on window cache 316.
When a URL appears on the status bar, window analyzer 308 presumes that the user is
interested in any window navigating to that URL. Accordingly, new windows navigating
to URLSs that previously appeared on the status bar are deemed to be user-initiated and

allowed to be displayed.

In one embodiment, rules list 310 includes a rule that a new window appearing
when the main browser window has not changed for some time (e.g., 30 seconds) is
deemed to be a good window. The amount of time for waiting for the changing of the
main browser window may be varied depending on implementation. This rule is based
on the assumption that most bad windows appear shortly after a user has navigated to
a web site. If the user has not been navigating to other web sites, as is the case when
the main browser window has not changed for some time, there is a good chance that

any new window is probably user-initiated and should not be blocked.

In one embodiment, rules list 310 includes a rule that a new window appearing

again after it was recently blocked is deemed to be a good window. The idea behind

-16 -



20

Attorney Docket No. 10005.000120

this rule, referred to as the “two-times-in-a-row rule”, is that a window appearing again a
second time within a predetermined period (e.g., 10 seconds) may be a user-initiated
window that was inadvertently blocked; the amount of time for waiting for the launching
of the second window may be varied depending on implementation. One way of
determining whether two windows are the same is by examining their URLs. If two
windows have the same URL, window analyzer 308 presumes the two windows to be
the same. The two-times-in-a-row rule works as a back-up mechanism to the user-
initiated rule, further optimizing the blocking of bad windows while minimizing impact to
normal user activity. The two-times-in-a-row rule may be removed in applications where
it allows too many bad windows to be displayed. The two-times-in-a-row rule may also
be removed in applications where the user-initiated rule is quite effective in detecting

user-initiated windows.

In one embodiment, rules list 310 includes a rule that new windows containing a
password or login field are deemed to be good windows and, accordingly, are not

blocked.

In one embodiment, rules list 310 includes a rule that new windows originating
from a secure domain are deemed to be good windows and, accordingly, are not
blocked. One way of identifying a secure domain is by the scheme portion of its URL.

As is well know, a URL can be broken down into the following parts:
<scheme>:<scheme-specific name>

An example scheme commonly used by secure domains is HTTPS (e.g.,
“https://creditcards.com”), which refers to Hypertext Transfer Protocol encrypted over

Secure Sockets Layer (SSL). Thus, windows originating from a domain using an
-17 -



15

20

Attorney Docket No. 10005.000120

HTTPS scheme are not blocked. As can be appreciated, other ways of identifying a
secure domain may also be used without detracting from the merits of the present

invention.

As shown in FIG. 3, a memory 203A may also include an exclusion list 312. An
exclusion list 312 may be a text file stored in a mass storage device and then loaded
into a memory 203A, for example. An exclusion list 312 may be in any computer-
readable format or data structure. Advantageously, an exclusion list 312 is
implemented as a separate module so that it may be updated without having to update

the entirety of a computer program employing the list.

[n one embodiment, exclusion list 312 includes a list of domain names (e.g.,
www.store.com/...) where bad windows will not be blocked regardless of the rules in
rules list 310. That is, exclusion list 312 takes priority over rules list 310. This allows all
types of windows, whether good or bad, from a particular domain to be displayed. For
example, if www.store.com is on exclusion list 312, the blocking of bad windows is

disabled when the user is browsing anywhere in the domain of www.store.com.

In one embodiment, exclusion list 312 includes a locally—fnanaged exclusion list
312A and a remotely-managed exclusion list 312B. Exclusion list 312A includes a list of
domain names entered by a user. As can be appreciated, exclusion list 312A provides

the user some control on the window-blocking process.

The user may enter a domain name into exclusion list 312A several ways; the
manner in which domain names are entered into an exclusion list does not affect the
efficacy of the present invention . One way is to present a menu to the user when she

right-clicks (i.e., presses the right mouse button) on a web page. Referring to FIG. 6A,
-18 -



15

20

Attorney Docket No. 10005.000120

a menu 601 is displayed when the user right-clicks on a web page 602. Selecting
choice 603 from menu 601 adds the domain name of web page 602 to exclusion list

312A.

A dialog box may also be used for adding or removing a domain name from
exclusion list 312A. Such a dialog box may be invoked by selecting choice 604 from
menu 601, for example. Referring to FIG. 6B, a dialog box 611 includes a text box 612
listing all domain names in exclusion list 312A. Selecting a domain name from text box
612 and clicking on delete button 614 will remove the selected domain name from
exclusion list 312A (and from text box 612). Clicking on add button 613 brings up a
dialog box 621 shown in FIG. 6C, where a domain name to be added may be entered
on text input field 622. The entered domain name is added to exclusion list 312A and

appears on text box 612.

Remotely-managed exclusion list 312B includes a list of domain names
downloadable from a support server computer 103. Window-blocking is not performed
in domains included in an exclusion list 312B. This allows a vendor (who may be the
operator of a support server computer 103) to offer a window-blocking computer
program at no cost to users, so long as the program does not block windows from the
vendor or partner web sites. That is, a vendor may choose to include in an exclusion
list 312B domain names of partners who may be subsidizing the development and
maintenance of the window-blocking computer program. As can be appreciated, a
window-blocking computer program in accordance with the present invention will still
block a substantial amount of bad windows even with a remotely-managed exclusion list

312B. The window-blocking computer program will block a substantial amount of bad

-19-



15

20

Attorney Docket No. 10005.000120

windows, while displaying a relatively small amount of its own windows in return. Of
course, exclusion list 312A and/or 312B may be omitted from memory 203A depending

on implementation.

As shown in FIG. 3, memory 203A further includes a support server interface
314. Support server interface 314 includes computer-readable program code for
communicating with a support server computer 103. A window cache 316 provides a
general buffer area where status bar information, window characteristics, URLs, values,

HTML code of a web page, etc. may be temporarily stored.

A scorekeeper 318 includes computer-readable program code for gathering
statistical information. Examples of statistical information tracked by scorekeeper 318
include the number of windows that have been blocked and the domains where

windows have been blocked.

A Ul manager 320 includes computer-readable program code for presenting
various user interface components such as dialog boxes, message boxes, menus etc.

to users.

Referring now to FIG. 7, there is shown a flow diagram of a method for
processing windows in accordance with an embodiment of the present invention. In
action 702, listener 306 receives an event notification from web browser 302 that a new
window is opening up. In action 704, the window is prevented from being displayed
while window analyzer 308 examines the window. This gains some time for window
analyzer 308, and also prevents the window from flickering in and out of the user’s view

if it turns out to be a bad window that has to be blocked. The window may be prevented

-20-



15

20

Attorney Docket No. 10005.000120

from being displayed by turning OFF its visibility attribute. Another way is to move the

window to a screen location not viewable by a user (e.g., move the window off-screen).

Continuing in action 706, window analyzer 308 consults an exclusion list 312
(i.e., 312A and/or 312B) to determine if the window is navigating to a domain where
window blocking is not allowed. Because the window may be redirected to another
domain on its way to its intended domain, window analyzer 308 also checks the domain

where the window ended up to check if it is in an exclusion list 312.

In actions 708 and 714, the window is allowed to be displayed if it is on a domain
included in an exclusion list 312. The window may be displayed by turning ON its

visibility attribute and/or moving it back to its intended screen location.

In actions 709 and 714, the window is allowed to be displayed if window analyzer

308 determines that it is a good window.

In actions 710 and 712, the window is blocked if window analyzer 308
determines that it is a bad window. One way of blocking the window is to invoke a
browser method to close the window. Another way of blocking the window is to hide it
away from the user’s view by keeping it invisible or off-screen. Hiding the window,
instead of closing it, is preferable in applications where the user may want to review a
list of blocked windows and selectively view those that are of interest to her. For
example, a blinking tray icon such as icon 801 of FIG. 8 may be displayed to alert the
user that bad windows have been blocked at the domain indicated in address window
405. Clicking on icon 801 may then bring up a dialog box (not shown) listing all the bad
windows that have been blocked; clicking on a listed blocked window would then allow

that window to be displayed.
-21-



20

Attorney Docket No. 10005.000120

Techniques For Defeating A Window-Blocking Mechanism

A technique for defeating window-blocking mechanisms (e.g., a window-blocking
computer program) is generally desirable to those who deliver messages to users via
pop-ups, pop-unders, and other types of windows. Such a technique may be
implemented as computer-readable program code, referred to herein as “defeat code”.
The defeat code may be included in a web page, Java™ script, or Visual Basic™ script,
for example. The defeat code may also be part of a computer program. As can be

appreciated, a defeat mechanism may also be implemented in hardware or firmware.

One way of defeating window-blocking computer programs is to identify such
programs and include them in a product list 322 (see FIG. 3). A human researcher may
identify window-blocking computer programs by independent testing, reading trade
journals, searching the Internet for information, etc. The names of the window-blocking
computer programs, which may include their respective file names, are then entered
into a product list 322. Product list 322 may then be installed on a client computer 101.
Product list 322 may be updated from time to time to include newly identified window-
blocking computer programs. In one embodiment, a defeat mechanism searches a
client computer 101 for the presence of window-blocking computer programs identified
in a product list 322. Of course, information in a product list 322 may also be embedded
in a defeat code. When a window-blocking computer program is found, the defeat
mechanism may then disable the program by initiating an uninstall, for example. The
user’'s permission may be required for every window-blocking computer program to be

disabled. The window-blocking computer program may also be disabled by closing the

-22.



15

20

Attorney Docket No. 10005.000120

program or removing/altering its components such as registry entries, settings,

configuration files, modules, and data files.

In one embodiment, a defeat mechanism may make a window-blocking computer
program look like its malfunctioning to make the user uninstall the window-blocking
computer program. For example, the defeat mechanism may indiscriminately close any
new window to make the user believe that the window-blocking computer program is

malfunctioning.

In one embodiment, a defeat mechanism incorporates a non-functional attribute
to a window for the purpose of defeating a window-blocking computer program. In the
present disclosure, the term “non-functional” includes that which is unnecessary,
hidden, or dummy. For example, a defeat mechanism may launch a window with a non-
functional menu bar or tool bar. That is, the defeat mechanism may incorporate a menu

bar (or tool bar) to a window even though it does not provide any real function.

In one embodiment, a defeat mechanism launches a window multiple times for

the purpose of defeating a window-blocking computer program.

In one embodiment, a defeat mechanism incorporates a non-functional field to a
window for the purpose of defeating a window-blocking computer program. For
example, a defeat mechanism may launch a window with a non-functional password
field or login field (or the word “password” or “login”, for example). That is, the defeat
mechanism may incorporate a password field or login field to a window even though the

window does not require a password or users to login.

-23-



15

20

Attorney Docket No. 10005.000120

In one embodiment, a defeat mechanism repeatedly turns ON the visibility
attribute of a window for the purpose of defeating a window-blocking computer program.
For example, a defeat mechanism may turn ON the visibility attribute of a window

several times a second.

In one embodiment, a defeat mechanism repeatedly positions a window in a
screen location viewable by a user for the purpose of defeating a window-blocking
computer program. For example, a defeat mechanism may move the window to the

same screen location several times a second.

In one embodiment, a defeat mechanism waits for a predetermined amount of
time (e.g., 30 seconds) before launching a new window for the purpose of defeating a
window-blocking computer program. The amount of time for waiting for the launching of
a new window may be varied depending on implementation. For example, a defeat
mechanism may delay the launching of a new window in order to make a window-

blocking computer program assume that the new window is a user-initiated window.

In one embodiment, a defeat mechanism uses part of a domain name within the
URL of a window for the purpose of defeating a window-blocking computer program.
For example, when at “hooray.com”, a window served from a server other than a

hooray.com server may have a URL that reads:
http://www.badads.com/ad/14223312/hooray.com.

This will defeat a window-blocking computer program that allows all windows from a
specific domain (e.g., hooray.com), and uses a simple URL scan to look for matching

domain names.

-24 -



15

20

Attorney Docket No. 10005.000120

In one embodiment, a defeat mechanism intercepts an event to close a window.
Instead of letting the window close, the defeat mechanism hides the window or moves it
off screen. Thereafter, the defeat mechanism launches a bad window. This technique
will defeat window-blocking computer programs that look for bad windows launched

when a user exits a web site or web page, for example.

In one embodiment, a defeat mechanism momentarily changes the status bar of
a browser to reflect a bad window’s URL. This technique will defeat window-blocking

computer programs that monitor the status bar.

in one embodiment, a defeat mechanism inputs keystroke combinations into the
browser or triggers mouse events to fool a window-blocking computer program into

believing that a bad window is user-initiated.

In one embodiment, a defeat mechanism sets the title of a bad window such that
a window-blocking computer program that examines the title bar is defeated. For
example, if a window-blocking computer program does not block windows whose title
bar reflects “yahoo”, the defeat mechanism may change the title bar of a bad window to

“yahoo” whether or not the bad window is served from a yahoo.com server.

In one embodiment, a defeat mechanism uses a single web server computer
having a rotating list of messages (e.g., advertisements) to serve a bad window.
Successive calls to the same URL would thus result in different messages being
displayed in different windows having the same URL. This technique will defeat

window-blocking computer programs that employ a two-times-in-a-row rule.

-25.



20

Attorney Docket No. 10005.000120

In one embodiment, a defeat mechanism serves bad windows from a secure
domain to defeat window-blocking computer programs that allow all windows from
secure domains. For example, a defeat mechanism may originate bad windows from

an SSL server.

In one embodiment, a defeat mechanism alters an exclusion list or rules list of a
window-blocking computer program to defeat the program. For example, a defeat
mechanism may surreptitiously include a domain name in an exclusion list or a rule in
the rules list. The defeat mechanism may also surreptitiously remove or replace a list

employed by a window-blocking computer program.

In one embodiment, a defeat mechanism displays messages on a window that is
not detectable or hookable using a conventional browser API (i.e., browser AP|
commercially available for a specific browser). For example, a defeat mechanism may
faunch a non-browser window (e.g., a normal window object), and embed a browser
control in the window. The defeat mechanism may then turn OFF an attribute
commonly known as “RegisterAsBrowser” to prevent other programs, such as a
window-blocking computer program, from detecting the window or closing the window

by hooking into the embedded browser control.

In one embodiment, a defeat mechanism displays a message in a window
created using proprietary programming techniques to prevent other programs, such as a
window-blocking computer program, from detecting or influencing the window. For
example, instead of directly using HTML with a browser application or control, a custom
HTML display engine may be used to interpret HTML code to build a graphical display

for a message. Because the resulting graphical display is not a browser application and

-26 -



15

20

Attorney Docket No. 10005.000120

does not include an embedded browser control, it cannot be influenced using
conventional browser APl. The defeat mechanism may also use a proprietary

language, instead of HTML, to create a window.

In one embodiment, a defeat mechanism displays messages on the same
window in-between navigations to defeat a window-blocking computer program. For
example, a message may be displayed on a main browser window. When a user clicks
a hyperlink to go to another web page, the defeat mechanism may then display another
message on the same main browser window for a few seconds before navigating to the
new web page. This prevents a window-blocking computer program from suppressing

the message.

Information Regarding Other Computer Programs

In accordance with an embodiment of the present invention, window analyzer
308 may further include computer-readable program code for identifying windows that
offer products to users (hereinafter “product-offering windows”). In some embodiments
of the present invention, product-offering windows are deemed to be good windows and

not blocked by window analyzer 308.

In one embodiment, window analyzer 308 determines whether a window is
offering a downloadable program by searching the content of the window for text strings
such as “download” or a company/product name. Window analyzer 308 may also look
for the presence of authentication information such as a digital certificate and
associated CLSID (Class ID) in the HTML code of the window. As is well known, a
CLSID is a universally unique identifier (UUID) that identifies a type of Component

Object Model (COM) object. Each type of COM object item has its CLSID in the registry
-927 -



20

Attorney Docket No. 10005.000120

so that it can be loaded and used by other applications. For example, a spreadsheet
may create worksheet items, chart items, and macrosheet items. Each of these item
types has its own CLSID that uniquely identifies it to the system. In this embodiment of
the present invention, CLSIDs are used to identify an installable computer program that

may be offered through a browser for download and installation.

As shown in FIG. 3, a memory 203A may further include a product list 322
containing a list of computer programs and their respective CLSIDs. Product list 322
may be a text file stored in a mass storage device and then loaded into a memory 203A,
for example. Product list 322 may be in any computer-readable format or data
structure. Advantageously, product list 322 is implemented as a separate module so
that it may be updated without having to update the entirety of a computer program

employing product list 322.

In one embodiment, product list 322 includes a description of computer programs
to aid users in deciding whether they should install a computer program being offered to
them. The descriptions may be gathered by a human researcher by reading other
reviews of the computer program or by independent testing. Thereafter, the
descriptions are entered into a product list 322, where they are matched with
corresponding CLSIDs. Product list 322 may be updated from time to time by

downloading a new product list 322 from a support server computer 103.

FIG. 9A schematically illustrates a dialog box 901 offering a downloadable
computer program to a user. From a CLSID included in the HTML code that generated
dialog box 901, window analyzer 308 detects dialog box 901 as offering a downloadable

computer program from a specific vendor. Accordingly, window analyzer 308 retrieves

-28-



15

20

Attorney Docket No. 10005.000120

a description for the detected CLSID from product list 322, and then commands Ul
manager 320 to display a message box 902 containing the description as shown in FIG.
9B. As can be appreciated, third-party information about the computer program, such
as that provided by message box 902, allows the user to make a more meaningful

decision as to whether to install the computer program on her computer.

Distribution Of Computer Programs

A computer program in accordance with embodiments of the present invention
may be distributed to users several ways. One way is to distribute the computer
program on removable storage media such as a CD-ROM, for example. Another way is
to offer the computer program for download from a server computer such as a web
server computer 102 or a support server computer 103. Another way is to bundle the
computer program with a second computer program; the computer program may be
offered to the user while the second computer program is being processed for

installation on the user’s computer.

FIG. 10 shows a flow diagram of a method for distributing a computer program in
accordance with an embodiment of the present invention. While the method of FIG. 10
will now be described in connection with a window-blocking computer program, those of
ordinary skill in the art will appreciate that the method may be used to distribute any

type of computer program.

In action 1002, a computer program is installed on a client computer 101.
Preferably, the computer program will only have minimum functionality to minimize its
impact on the storage and computing resources of the client computer. For example,

an exclusion list 312 does not have to be installed if the program is a window-blocking
-29-



15

20

Attorney Docket No. 10005.000120

computer program. Also, the computer program is installed but remains partially
disabled (i.e., inactive) until the user accepts it. For a window-blocking computer
program, window analyzer 308 detects bad windows and good windows but will not

block any window.

In action 1004, the user’s need for the computer program is detected. In the
window-blocking computer program example, scorekeeper 318 keeps track of the

number of bad windows detected by window analyzer 308.

In actions 1006 and 1008, the user is informed of the usefulness of the computer
program, and is thereafter offered the computer program. In the window-blocking

computer program example, window analyzer 308 commands Ul manager 320 to

display the results of scorekeeper 318 once the number of detected bad windows

reaches a certain threshold (e.g., 2 bad windows in a given session). The threshold
may be varied depending on implementation. An example message box that may be

displayed to the user may read:

“You have received 2 bad windows since you started browsing today. |
can make bad windows automatically disappear so they can’t bug you.

Press the ACTIVATE button to say goodbye to bad windows.”

A similar message reminding the user of the usefulness of the computer program may
also be displayed if the user installs the computer program and decides to uninstall it
later on. As can be appreciated, offering a computer program when the user needs it
most increases the chance of the user accepting the program; reminding the user of the
efficacy of the computer program at a time when the user is trying to uninstall it

increases the chance of the user keeping the program.
-30 -



Attorney Docket No. 10005.000120

In action 1010, the computer program is enabled (i.e., fully activated) if the user
decides to accept it. At this point, the entirety of the computer program may be installed
in the user’'s computer if needed. In the window-blocking computer program example,
exclusion list 312 may be downloaded to the user’s client computer 101 if the list is not

already installed.

An improved technique for processing windows has been disclosed. While
specific embodiments have been provided, it is to be understood that these
embodiments are for illustration purposes and not limiting; many additional
embodiments will be apparent to persons of ordinary skill in the art reading this
disclosure. For example, while the following description uses a computer network such
as the Internet as an example, persons of ordinary skill in the art will appreciate that the
present invention also applies to windows that are generated by a local program on a
non-networked computer. Thus, the present invention is limited only by the following

claims.

-39 -



	2001-11-27 Specification

